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Estimating the onset of natural convection in a horizontal layer of a
fluid with a temperature-dependent viscosity
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Abstract

A simple method, which can be applied to estimate the onset of natural convection in a fluid with a temperature-dependent viscosity, is
presented here. It is shown that this method is very useful for experimentalists and engineers to estimate the onset of natural convection in
a horizontal fluid layer. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Natural convection in a fluid layer with a strongly
temperature-dependent viscosity has received considerable
attention in recent years, because of its wide applications
in research and industry fields such as geophysics, astro-
physics, material science, solar collectors, heat exchangers,
nuclear reactors and so on. Numerous studies have shown
that strongly temperature-dependent viscosity has a great
effect on the onset of natural convection. Some publications
about this topic are Stengel et al. [1], Busse and Frick [2],
White [3] and Bottaro et al. [4].

The effect of temperature-dependent viscosity on the
onset of natural convection is reconsidered in this com-
munication. The propose of this study is to look for a
simple way to estimate the onset of natural convection for
a system, where the viscosity of working fluid is strongly
temperature-dependent. The method described here is very
useful for experimentalists and engineers, especially, when
they design new convection systems.

2. Mathematical description of the problem

We consider a horizontal infinite fluid layer of thickness
H∗ with the temperature T ∗

1 and T ∗
2 at the upper and lower

boundaries, respectively. Except the dependence of viscosity
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µ∗ on temperature and the linear dependence of density on
temperature in gravity term (Boussinesq approximation), all
other properties are regarded as constants. The density ρ∗
(in gravity term only) is expressed as

ρ∗ = ρ∗
R[1 − α∗(T ∗ − T ∗

R )], (1)

where α∗ is the thermal expansion coefficient, R the ref-
erence point which is located on the midplane of the fluid
layer and the reference temperature is T ∗

R = 1/2(T ∗
1 + T ∗

2 ).
All dimensional quantity is stared.

The present analysis is based on an extended version of
linear stability theory which holds when viscosity is a func-
tion of temperature. In this theory, quantity a∗ is decom-
posed into a mean value ā∗ and a disturbance ã∗ as

a∗ = ā∗ + ã∗, (2)

here a∗ represents velocity, pressure, temperature and vis-
cosity.

We look for a steady cellular solution as Stengel did [1].
The disturbance ã∗ is assumed as

ã∗ = â∗(z∗) e(ik∗
xx∗+ik∗

yy∗) + c.c., (3)

where c.c. stands for the complex conjugate.
Using H∗, H∗2/κ∗ and �T ∗ = T ∗

2 −T ∗
1 as the scales for the

length, time and temperature, respectively and substituting

p∗ = ρ∗
Rg∗H ∗Π̄1(z) + µ∗

Rκ∗

H ∗2
�̃2(x, y, z, t) and

T ∗ = T ∗
R + �T ∗[T̄ (z) + T̃ (x, y, z, t)]
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Nomenclature

a general quantity
C, d viscosity law constants
H channel height
k wave number
kx x-component wave number
ky y-component wave number
p pressure
Ra Rayleigh number
Rc system parameter
s the largest relative error
T temperature
w velocity normal to the plate
x, y, z Cartesian coordinates

Greek symbols
α thermal expansion coefficient
ε heat transfer rate
κ thermal conductivity
µ viscosity
ρ density

Subscripts
c critical value
R reference state

Superscripts
∗ dimensional quantity
∧ shape function

together with Eqs. (1)–(3) into the N–S equations which
hold for variable viscosity and the energy equation, after
canceling the x and y component of velocity and pressure
disturbances, the non-dimensionalised disturbance equations
are

{[
µ̄

(
d2

dz2
− k2

)
+ 2

dµ̄

dz

d

dz

] (
d2

dz2
− k2

)

+d2µ̄

dz2

(
d2

dz2
+ k2

)}
ŵ − Rak2T̂ = 0, (4)

(
d2

dz2
− k2

)
T̂ − dT̄

dz
ŵ = 0, (5)

where k2 = k2
x + k2

y . The z-axis of the Cartesian co-ordinate
system coincides with the opposite direction of gravity.
Rayleigh number (Ra) is Ra = g∗ρ∗

Rα∗�T ∗H ∗3/µ∗
Rκ∗.

The mean temperature field is T̄ (z) = −z.
The boundary conditions at z = ±1/2 with fixed plate

temperature are

ŵ = dŵ

dz
= T̂ = 0. (6)

3. The introduction of new parameter

It is well known that natural convection in a horizontal
fluid layer with isothermal boundaries and no internal heat
sources is governed by Ra. The definition of Ra gives the
following information:

• Ra depends on the temperature difference between the
two plates �T∗.

• Ra depends on the gravity acceleration, the characteristic
length H∗, the reference temperature T ∗

R and the properties
of working fluid at T ∗

R .

Now we recall Ra and separate it into two parts as

Ra = g∗ρ∗
Rα∗�T ∗H ∗3

µ∗
Rκ∗ = εRc, (7)

where Rc = g∗ρ∗
Rα∗T ∗

RH ∗3/µ∗
Rκ∗ is the introduced

non-dimensional parameter. It is a intrinsic number for a sys-
tem and depends on the gravity acceleration, the reference
temperature, the characteristic length and the properties of
working fluid at the reference temperature. ε = �T ∗/T ∗

R is
the heat transfer rate. By introducing Rc, Ra is successfully
separated the effect of external supplied temperature differ-
ence �T∗ from that of Rc. For starting natural convection,
Ra should at least be equal to the critical Rayleigh number
(Rac). Thus, from Eq. (7), it is found that for a system with
large Rc, a small �T∗ is needed to start natural convection.

4. Results and discussion

The numerical method used to solve Eqs. (4)–(6) is the
Chebyshev collocation method. T̂ and ŵ are expanded in
terms of Chebyshev polynomals. In our case, 40 Chebyshev
polynomals are appropriate. Fig. 1 shows our results agree
very well with those of Busse and Frick [2], where viscosity
depends linearly on temperature and r is the ratio of viscosity
at the upper boundary to that at the lower boundary.

For common liquids, the temperature-dependent viscosity
can be expressed as

µ = C ed∗/T ∗
, (8)

where C and d∗ are constants, which are determined by the
kind of liquid and the reference temperature, respectively.

We firstly use water as an example working fluid in order
to show how our method is applied to determine the Rac with
temperature-dependent viscosity effect. Water is chosen here
because its viscosity strongly depends on temperature and its
other properties do not. Thus, all properties are considered as
constants except the viscosity and the density in the gravity
term. For water, C = 0.002243 and d∗ = 1787.33 K.

Fig. 2 shows the dependence of Rac on ε for water (curve
AB). Then the parameter Rc should be determined for the
convection system. For example, if Rc = 20 000 for this
system, we can draw the straight line Rac = Rcε (line OC)
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Fig. 1. The critical Rayleigh number as a function of the viscosity ratio r. The solid square points are our numerical results, the curve is the result of
Busses and Frick [2].

in Fig. 2. The cross point of curve AB and line OC is D.
The abscissa and vertical coordinates of the point D show
the critical heat transfer rate εc and Rac for this system.

There is a important point that we should notice. For all
liquids, they have freezing point and boiling point. If the
upper or the below plate temperature is out of the liquid state
temperature range of the working liquid, the viscosity law
(Eq. (8)) of liquid does not hold and our method cannot be
applied. For example, the water’s freezing point is 273 K.
Then the largest �T∗ is 40 K for the system with a reference
temperature 293 K. Thus, the largest possible ε is 0.1365
(point E). If the cross point D is on the right side point E,

Fig. 2. The dependence of the critical Rayleigh number on heat transfer rate at T ∗
R = 293 K for water. The procedure to estimate the critical Rayleigh

number for Rc = 20000 system.

it means ∆T ∗ > 40 K and the water near the upper plate is
freezing.

The method to estimate Rac as shown in Fig. 2 gives a
relatively low resolution result. To improve its resolution,
Eq. (7) is rewritten as

Rac − Rac0 = Rc

(
ε − Rac0

Rc

)
(9)

where Rac0 = 1707.8 is the critical Rayleigh number with
constant viscosity.

From the known relation of critical Rayleigh number and
heat transfer rate, i.e. Rac = f (ε), the curve which shows
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Fig. 3. The difference of the critical Rayleigh number and the critical Rayleigh number with constant viscosity depends on heat transfer rate at T ∗
R = 293 K

for water. The procedure to estimate the critical Rayleigh number for Rc = 20000 system by the method with high resolution.

the dependence of Rad = Rac − Rac0 on ε for water (curve
AB) and the straight line Rad = Rc(ε − Rac0/Rc) for Rc =
20000 (line FC) in Fig. 3 can be drawn. The cross point D
of curve AB and line FC is (Rad

D, εD). The critical Rayleigh
number and the critical heat transfer rate for this system are
Rac = Rac0 + Rad

D and εc = εd, respectively.
The basic steps of applying our method are:

1. Determine the reference temperature T ∗
R = 1/2(T ∗

1 +
T ∗

2 ).
2. Find the relation of critical Rayleigh number Rac and

heat transfer rate ε at T ∗
R .

3. Draw the dependence of Rad = Rac − Rac0 on ε (like
the curve AB in Fig. 3).

4. Calculate the Rc number of the convection system.
5. Draw the line Rad = Rc(ε − Rac0/Rc) in the same

co-ordinate system of step (3).
6. Look for the cross point D coordinates (Rad

D, εD) and
compute the Rac and critical heat transfer rate by Rac =
Rac0 + Rad

D and εc = εd, respectively.
7. Finally check if the viscosity law (Eq. (8)) can be applied

for this case.

From the above steps, it is found that the core procedure
is the step (2). If the relation Rac = f (ε) at the reference
temperature is found, Rac and critical heat transfer rate can
be known easily. Now we will explain how to find the rela-
tion Rac = f (ε) from a known database.

Table 1 gives the Rac s for different liquids and heat trans-
fer rates at two reference temperatures. For the liquid which
is not shown in Table 1, it is found that the relation of Rac
and heat transfer rate can be determined by linear interpola-
tion from the results of its two neighbour d∗s. For example,
if we want to look for the relation of Rac and heat transfer
rate at d∗ = 4700 K, we apply the linear interpolation and

have

Rac(4700, ε)

= Rac(5000, ε)(d∗ − 4000) + Rac(4000, ε)(5000 − d∗)
1000

.

(10)

Then the curve of Rac with respect to ε can be found for
d∗ = 4700 K if we know Rac values at several heat transfer
rates. Table 2 shows the results by the linear interpolation

Table 1
The critical Rayleigh number

0 K 1000 K 2000 K 3000 K 4000 K 5000 K

T ∗
R = 293 K
0.1 1707.8 1718.1 1733.6 1754.4 1780.0 1810.1
0.2 1707.8 1749.2 1811.5 1891.6 1985.1 2085.7
0.3 1707.8 1802.2 1941.2 2109.0 2281.7 2429.1
0.4 1707.8 1878.5 2121.1 2382.1 2586.7 2667.3

T ∗
R = 323 K
0.1 1707.8 1716.9 1730.4 1748.1 1770.0 1795.6
0.2 1707.8 1744.5 1798.4 1867.7 1949.3 2038.5
0.3 1707.8 1791.4 1912.6 2060.7 2218.8 2365.6
0.4 1707.8 1859.0 2072.7 2311.8 2522.1 2648.4

Table 2
The critical Rayleigh number by linear interpolation and exact solution
method, d∗ = 4700 K

T ∗
R = 293 K T ∗

R = 323 K

ε Interpolation Exact Interpolation Exact

0.1 1801.1 1800.6 1787.9 1787.5
0.2 2055.5 2055.4 2011.8 2011.2
0.3 2384.5 2389.2 2321.5 2324.1
0.4 2643.1 2658.9 2610.5 2622.1
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method and the results by solving Eqs. (4)–(6) with viscosity
law (8) for d∗ = 4700 K. The method to solve Eqs. (4)–(6)
with viscosity law (8) is called “exact solution method” here.

The largest relative errors of Rac between the linear in-
terpolation results and the exact solution results is less than
0.65% in Table 2. We further find that s is less 1% for
all other d∗ (d∗ < 5000 K and ε < 0.4). Thus, it is con-
cluded that the dependence of Rac on heat transfer rate for
all d∗(0 < d∗ < 5000) at the reference temperature (293 or
323 K) can be determined by the linear interpolation method
from the database shown in Table 1.

By the same way, we also find that the dependence of Rac
on heat transfer rate at a reference temperature T ∗

R (293 <

T ∗
R < 323 K) can be determined by linearly interpolating

the corresponding results (shown in Table 1) at reference
temperatures 293 and 323 K. The results is not presented
here for brief.

In the above discussions, it is showed how to determine
the relation of Rac and heat transfer rate for a wide range of
d∗ and T ∗

R (0 K < d∗ < 5000 K and 293 K < T ∗
R < 323 K)

by the linear interpolation method. Thus, Rac can be deter-
mined by our method for all systems with working liquid
and reference temperature in the above range. It is further
concluded that if we have a database with the information for
all liquids and reference temperatures, the critical Rayleigh
number can be determined by our method for all systems
with temperature-dependent viscosity effect.

5. Conclusions

The effect of temperature-dependent viscosity on Rac
is further clarified by introducing the parameter Rc.
The present method shows a rather simple way to esti-
mate the critical Rayleigh number with the influence of
temperature-dependent viscosity. There is no doubt that this
method is welcomed by the experimentalists and engineers
who want to know the Rac for a convection system. This
method can be further generated to consider the effects
of other temperature-dependent properties such as density,
heat conductivity and specific heat. On the other hand, the
present method can also be applied to estimate the onset of
natural convection with other boundary conditions.
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